Scientific Literature

Abstract

 

Objective: to determine the in vitro insertion torque, and the early in vivo performance of self-tapping implant thread designs.

 

Methods: The self-tapping implant thread designs were used: Blossom (B), Classic Cutting Flutes (DT), and no cutting classic design (C). All implants were 4mm diameter and 10mm length. The implants were inserted in a 3.2mm osteotomy in a foam material and the torque as a function of number of turns was recorded. For the in vivo part of the experiment, the implants were bilaterally placed in a 3.2mm osteotomy in the proximal tibia of 6 dogs, remaining for 2 and 4 weeks in vivo (6 per limb). Following euthanisation, half the implants were torqued to interface failure and the other half were nondecalcified processed for bone-to-implant contact determination. Statistical analysis was performed at 95% confidence level by ANOVA considering BIC and Torque as dependent variables.

 

Results: The self-tapping implant designs presented lower insertion torque values compared to the C group. While up to 6 turns the B and DT implants presented similar torque vales, lower values were observed for the B values up to 12 turns. Time in vivo and implant design did not have an influence in torque to interface failure and BIC.

 

Conclusion: While the self-tapping implants presented lower insertion torque values, no differences in BIC and torque to interface failures were detected between different implant tread designs at early implantation times.

Laboratory Torque Testing, Histomorphometric and Biomechanical Testing or Self-Tapping

Implant Thread Designs.

 

 

2010, Academy of Osseointegration, Annual Meeting, P222

Architectural

Design: 3

Sales and Technical Service: +1 877-330-0338

Monday - Friday, 9:00 a.m. - 5:00 p.m. EST  |  UNITED STATES

6560 West Rogers Circle, Suite 24 • Boca Raton, FL 33487

©2017 Intra-Lock International   |   Made in the USA